Hoxa9 transforms primary bone marrow cells through specific collaboration with Meis1a but not Pbx1b.
نویسندگان
چکیده
Hoxa9, Meis1 and Pbx1 encode homeodomaincontaining proteins implicated in leukemic transformation in both mice and humans. Hoxa9, Meis1 and Pbx1 proteins have been shown to physically interact with each other, as Hoxa9 cooperatively binds consensus DNA sequences with Meis1 and with Pbx1, while Meis1 and Pbx1 form heterodimers in both the presence and absence of DNA. In this study, we sought to determine if Hoxa9 could transform hemopoietic cells in collaboration with either Pbx1 or Meis1. Primary bone marrow cells, retrovirally engineered to overexpress Hoxa9 and Meis1a simultaneously, induced growth factor-dependent oligoclonal acute myeloid leukemia in <3 months when transplanted into syngenic mice. In contrast, overexpression of Hoxa9, Meis1a or Pbx1b alone, or the combination of Hoxa9 and Pbx1b failed to transform these cells acutely within 6 months post-transplantation. Similar results were obtained when FDC-P1 cells, engineered to overexpress these genes, were transplanted to syngenic recipients. Thus, these studies demonstrate a selective collaboration between a member of the Hox family and one of its DNA-binding partners in transformation of hemopoietic cells.
منابع مشابه
Meis1-mediated apoptosis 1 Blood Meis1-Mediated Apoptosis is Caspase-Dependent and can be Suppressed by Coexpression of HoxA9 in Murine and Human Cell Lines Running Title: Meis1-mediated apoptosis
152 words Abstract Coexpression of the homeodomain protein Meis1 and either HoxA7 or HoxA9 is characteristic of many acute myelogenous leukemias. Although Meis1 can be overexpressed in bone marrow long-term repopulating cells, it is incapable of mediating their transformation. While overexpressing HoxA9 alone transforms murine bone marrow cells, concurrent Meis1 overexpression greatly accelerat...
متن کاملTGFbeta/BMP inhibits the bone marrow transformation capability of Hoxa9 by repressing its DNA-binding ability.
Homeobox (Hox) gene mutations and their altered expressions are frequently linked to human leukemia. Here, we report that transforming growth factor beta (TGFbeta)/bone morphogenetic protein (BMP) inhibits the bone marrow transformation capability of Hoxa9 and Nup98-Hoxa9, the chimeric fusion form of Hoxa9 identified in human acute myeloid leukemia (AML), through Smad4, the common Smad (Co-Smad...
متن کاملHarvesting of bone marrow mesenchymal stem cells from live rats and the in vitro differentiation of bone marrow mesenchymal stem cells into neuron-like cells
In the bone marrow, there are certain populations of stem cell sources with the capacity to differentiate into several different types of cells. Ideally, cell transplants would be readily obtainable, easy to expand and bank, and capable of surviving for sufficient periods of time. Bone marrow mesenchymal stem cells (BM-MSCs) possess all of these characteristics. One of the most important benefi...
متن کاملEffect of daunorubicin drug with and without cimetidine on the nucleated cells of bone marrow of balb/c mouse
Introduction: Hematopoiesis is an on going process mammalian marrow system. A few cells from the nucleated cells of bone marrow are hematopoietic cells which include primary stem cells, precursor cells and progenitor cells. Primary stem cells and progenitor cells are able to produce colonies in culture medium (CFU-C) and irradiated mouse spleen (CFU-S). A hematopoietic cell is alive and act...
متن کاملDifferentiation of Adipose-derived Stem Cells into Schwann Cell Phenotype in Comparison with Bone Marrow Stem Cells
Objective(s) Bone marrow is the traditional source of human multipotent mesenchymal stem cells (MSCs), but adipose tissue appears to be an alternative and more readily available source. In this study, rat adipose-derived stem cells (ADSCs) were induced to differentiate into Schwann-like cells and compared with rat bone marrow stem cells (BMSCs) for their Schwann-like cells differentiation pote...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The EMBO journal
دوره 17 13 شماره
صفحات -
تاریخ انتشار 1998